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Abstract

Adversarial examples are inputs that are slightly modified with the objective to mislead com-

puter algorithms. Adversarial images, perceived as a great threat for computer vision models,

has not yet been proven to be dangerous for the human visual system. Some slight effects of

adversarial images on humans have recently been shown, however these results apply only in

very limited experimental settings. It remains a question whether adversarial images designed

to attack computer vision models can influence visual processes such as overt attention. In

this study, we address this question by making use of state-of-the-art approaches to gener-

ate adversarial images with the intent to alter human attention. We train a CNN-ensemble

to predict saliency maps and take the learned parameters to generate adversarial images with

the pursue to influence human eye movements in the same way as the CNN-ensemble. We

find that our adversarial images has fooled the saliency prediction of well-performing convo-

lutional network models and also has succeeded in steering human eye-movements to target

locations.
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1 Introduction

Artificial neural networks (ANNs) is a major branch in the field of artificial intelligence (AI),

and is inspired by the human brain. One of the most dominant sort of ANN is the Convolu-

tional Neural Network (CNN) (LeCun, Bengio, & Hinton, 2015; Krizhevsky, Sutskever, & Hinton,

2012). CNNs are predominantly used to solve complex image-driven pattern recognition tasks.

The success of the CNNs is not only inspiring for the development of new technologies, but

also aids in a better insight regarding the human brain. Research has been done using brain

data obtained from humans and other primates to predict their behavior (O’Connell & Chun,

2018). CNNs have also been used to predict brain activity, from large-scale neural activations

of specific brain regions (Güçlü & van Gerven, 2015, 2017), to the action potentials of individ-

ual neurons (Greene & Hansen, 2018). The fact that CNNs are capable of predicting biological

activity indicates that the mechanisms and computational principles underlying CNNs may

resemble those of biological brains.

Just as visual illusions take advantage of the shortcomings of the human visual system, ad-

versarial images takes advantage of the shortcomings of CNNs. Adversarial images however,

can have severe impact on the performance of machines, causing them to misclassify images,

which is a fundamental challenge for CNNs. The existence of adversarial images is believed

to be a threat against machine-vision systems in applied settings, and some researchers be-

lieve it reduces their advantage for understanding the human mind (Zhou & Firestone, 2019).

However, if we are able to make adversarial images that have an effect on both CNNs and the

human visual system, the effects of adversarial optimization becomes a powerful tool to un-

derstand both CNNs and the brain.

There are striking similarities between the human visual system and deep learning mod-

els as underlined by studies such as those of Güçlü and van Gerven (Güçlü & van Gerven,
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2015, 2017). Recently, experimental evidence has indicated that specific types of adversarial

attacks can be constructed that also have an impact on the judgement of time-limited hu-

mans when forced to categorize particular images (Elsayed et al., 2018). They were able to fool

time-limited humans, but non-time-limited humans did not misclassify it. However, because

humans are the ones labeling classifications, it is difficult to decide whether a sample is adver-

sarial as opposed to a sample’s class being changed. Additionally, it would be more of an adver-

sarial image if it was able to affect humans which are not necessarily time-limited. Therefore,

in this study, we aim to generate adversarial images to deceive computer models and humans

using neural networks, but we do not enforce categorization tasks. Instead, we aim to make

adversarial images based on adversarial saliency targets and CNNs that are trained to predict

visual saliency.

Visual saliency has been of great interest in both neurobiology and computer vision and is

a great way to test human attention. Attention and visual saliency are the product of a complex

set of processes involving diverse neural mechanisms working simultaneously. Understand-

ing the nature of these processes and their interplay is challenging. Even considering decades

of research involving visual psychophysics and accumulating neurophysiological data, a con-

sensus on the specific mechanisms involved remains elusive (Carrasco, 2011). We do know

that certain visual patterns tend to draw overt attention causing eye-movements towards that

area (Torralba, Oliva, Castelhano, & Henderson, 2006). In this study we want to see whether

deep neural networks can learn these patterns that influence eye-fixation and use the learned

information to manipulate eye movements. If we reach the level of attacking human eye fixa-

tions in such settings, it can be can be safely assumed that the model makes use of the correct

information representing the mechanisms of the human brain to predict saliency on an image.

Here, we make use of well-known pretrained models to characterize visual salience. We use

the saliency models to generate adversarial images. The performance of the saliency models

will then be tested based on the generated adversarial images and we want to see whether

these adversarial images will change human eye-fixation when compared with ground truth

images.
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Outline

Chapter 2 explains the full architecture and functions of the models that are used in our exper-

iments and the techniques that were used to make the adversarial images. Chapter 3 briefly

explains the human visual system and how we use our adversarial images to test the trans-

ferability from models to the human brain. The last chapter brings everything together in a

discussion and conclusion.
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2 Artificial Neural Networks

2.1 Introduction

AI models are characterized by their flexibility and capability to integrate different method-

ologies emulating biological systems behavior. Machine learning (ML) is a branch in AI which

makes use of algorithms that aims to recognize patterns, classify and predict based on large

amounts of data (Solomonoff, 1957). Despite having studied the brain for centuries, it remains

an unclear consensus on how it works for scientists. There are two main theories on how the

brain represents and computes information. Some theories propose that each individual neu-

ron can retain a high amount of information and represent complex ideas (Gross, 2002). A

popular belief though, is that the brain represent information via population, or distributed,

coding and that individual neurons do not carry dense information (Thorpe, 1998). Artificial

neural networks (ANNs) are models built to detect patterns, based on the second theory. ANNs

are self-adaptive, non-linear, data-driven models that do not require specific assumptions re-

garding the underlying model.

2.1.1 The perceptron

The perceptron is a form of a linear discriminant model and is introduced by Frank Rosenblatt

in 1962. The model consists of two classes in which the input vector x is first transformed

nonlinearly with a fixed function to give a feature vector φ(x), which is used to construct a

generalized linear model in the second class. The perceptron model is in the form

y(x) = f (wTφ(x)) (2.1)
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where the activation function f (·) is given by a step function in the form

f (a) =
1, a ≥ 0

-1, a < 0
(2.2)

The vector φ(x) typically includes a bias component φ0(x) = 1. Because the perceptron is not

a probabilistic model, it uses target values of t = 1 for class A and t = −1 for class B which

matches the choice of activation function (Rojas, 2013). The perceptron is the simplest form

of artificial neural network and can only be applied to linearly separable data.

2.1.2 Multilayer perceptron

A feedforward network, also called a multilayer perceptron, is a complex form of perceptrons

that is able to deal with nonlinear outputs and are essentially classic deep learning models.

Feedforward models learn in order to approximate a function f . For instance, for a classifying

model, y = f (x) predicts an output y based on the input x. The network predicts the relation-

ship between x and y , y = f (x;θ) by learning the parameters θ that produces the best function

approximation (Schmidhuber, 2015). Ultimately, information passes through the function be-

ing evaluated from x, then through the intermediate computations used to define f , and fi-

nally to the output y , resulting in a feedforward mechanism (Schmidhuber, 2015).

2.1.3 Deep Neural Network

A deep neural network is a collection of artificial neurons organized in a sequence of multiple

layers, where each of these neurons receive activation signals from other neurons in a previ-

ous layer and which the neuron uses to perform computations. The neurons cooperatively

carry out a complex mapping from the input to output. This mapping is learned from the

data by adapting the parameters of each neuron using backpropagation (Rumelhart, Hinton,

Williams, et al., 1988).

Convolutional neural networks

CNNs are primarily used in the field of pattern recognition within images. Just like other

DNNs, CNN’s neurons self-optimise through learning. For instance, an image classifier CNN

model takes in raw image vectors as input and uses a chosen loss function to obtain the final
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output of the class prediction score. Generally, CNNs are comprised of three types of layers.

These are convolutional layers, pooling layers and fully connected (FC) layers. Convolutional

layers contain neurons organized into three dimensions: the size of the input (height x width)

and the depth of the input. The depth refers to the different channels of the training images

(e.g. red, green blue channels). Pooling layers perform downsampling along the spatial di-

mensions of the input, reducing the number of parameters within that activation. The FC

layers produce class scores from the activations. Overall through this process of transforma-

tion, CNNs transform the original input, layer by layer, using convolutional and downsampling

techniques to produce predictions for image recognition tasks. The architecture, learnable

kernels, and features of CNNs and their hyperparameters such as depth, stride and padding

to optimize output, have been explained and used widely and can be found in various pa-

pers (Rastegari, Ordonez, Redmon, & Farhadi, 2016; Long, Shelhamer, & Darrell, 2015; O’Shea

& Nash, 2015; Sermanet et al., 2013; Zeiler & Fergus, 2014; Dong, Loy, He, & Tang, 2015; Si-

monyan & Zisserman, 2014).

2.1.4 Loss functions

To denote how far off the model’s prediction Y is from the target vector T, an objective function

is defined that typically computes a scalar loss L , for instance the mean-squared-error (MSE)

loss (LMSE ). The chosen loss function measures the costs for incorrect predictions, and as a

reaction thereof, the parameters are modified. Different algorithms mostly differ from each

other by the loss function that is minimized.

2.1.5 Adversarial Images

Adversarial images contain perturbations that lead the prediction model to predict differently

than they were trained to be. As demonstrated for the first time in 2013 (Szegedy et al., 2013),

changing pixels on an image with small perturbations can cause a model to misclassify that

image. Adverarial examples are defined as slightly modified samples of input data intended

to cause a machine learning classifier to misclassify it (Kurakin, Goodfellow, & Bengio, 2016).

While Luo et al. have proposed a method to generate attacks with high noise tolerance and tak-

ing into account the human perceptual system (Luo, Liu, Wei, & Xu, 2018), two recent papers

suggested that humans can to some degree be affected by adversarial perturbations. Zhou and
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Firesone have shown that humans are able to intuitively predict how a machine will classify

adversarial images (Zhou & Firestone, 2019), and Elsayed et. al showed some effects of adver-

sarial images on human classification (Elsayed et al., 2018). However, these results apply only

in very limited experimental settings (e.g. in Elsayed’s study a very short viewing times) and

require relatively large and transferable perturbations, which often tend to yield meaningful

features resembling the target class.

In our case, we will not have large perturbations that will aim to change a class of an image,

instead, we make subtle perturbations with the goal to change subconscious eye movements.

We propose a method that next to the pixel loss, makes use of the total variation loss LT V ,

spatial blurring at each image location. This limits the model to the same perception capabili-

ties as the human visual range. And because the LT V is fully differentiable, it allows gradients

to backpropagate through the network when generating the perturbations. More detailed on

how we generated the adversarial images are explained in the following section.

2.2 Materials and Methods

2.2.1 Data

We used the SALICON dataset that is introduced in 2015 (Jiang, Huang, Duan, & Zhao, 2015)

and is the largest dataset available for saliency prediction. The data set contains 10,000 train-

ing images, and 5,000 validation images with saliency targets. Instead of using eye-tracking

devices, SALICON uses a method involving a mouse (Jiang et al., 2015). Although this data

collection method may affect the accuracy and quality of the dataset, it is still an acceptable

and scalable proxy for the collection of ground-truth data. The testing data is not provided

with ground truth targets, so we split the 5000 validation images into two, resulting in 2500

test data, and 2500 validation data. The input images (X) are jpg format and were RBG with

a shape of (3, 480, 640) pixels and the corresponding saliency target heat maps (T) are png

format with a shape of (1, 480, 640).

Data preprocessing

Prior to using the images to train the models, each X is normalized and is kept the original size

(3, 480, 640). Every heatmaps T is resized to (1, 48, 64). Both X and T are then normalized in
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order to match the input requirements of the pretrained models in PyTorch.

2.2.2 Training

CNN-ensemble

We constructed an ensemble of four CNN models trained on ImageNet, and one CNN model

trained on the SALICON training set. The model trained on SALICON dataset is a self-made

architecture, and each of the other models is an instance of one of these architectures: In-

ception V3, DenseNet, AlexNet, Sueezenet. The CNN-ensemle is trained on saliency maps

representing eye fixations on a particular image. Diverse visual features can be learned to pre-

dict saliency maps, and then the features can be used to generate adversarial images. In our

experiment, we do that by making the CNN-ensemble that is trained on the SALICON dataset

and then use the features of the model to perturb the original input in a way that the CNN-

ensemble starts predicting a false saliency map for that image.

Modifying pretrained models

Because the pretrained models are classifiers, the output layers are FC layers outputting class

scores. In order to use the pretrained models as saliency models, the last layers had to be

replaced with various layers in order to obtain the desired output dimension. To avoid loosing

extreme spatial information that the pre-trained model has learned, the layers of each model

are carefully inspected and selected such that no layer that caused excessive dimensionality

reduction is included in the final ensemble. A schematic overview of the selected layers can be

found in figure 2.1 and table 2.1.

MSE Loss Function

For training the last layers of each network, we utilized the mean squared error (MSE) loss

function that considers the Euclidian distance of the salient areas between the ground truth

saliency map and the predicted output. It is defined as:

LMSE (t , y) = 1

N

N∑
j=1

(t j − y j )2 (2.3)
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Figure 2.1: Architecture of the CNN-ensemble. Using different pretrained networks to extract their
pretrained layers and then combining them with upsampling and convolutional layers to obtain the cor-
rect dimentions for the output.

AlexNet DenseNet InceptionV3 SqueezeNet

Pretrained features[:5]
- features[:7]
- ReLu

- until .Mixed_5d(x)
- features[:8]
- ReLu

Upsample 48 (48+3, 64+3) 48 48

Conv2D
in=192; out=192;
k=3; stride=1;
pad=1

in=512; out=1
k=6; stride=1;
pad=1

in=288; out=288;
k=3; stride=1;
pad=1

in=256; out=128;
k=3; stride=1;
pad=1

BachNorm 192 288 128
Upsample 48 48 48

Conv2D
in=192; out=192;
k=3; stride=1;
pad=1

in=288; out=144
k=3; stride=1;
pad=1

in=128; out=64;
k=3; stride=1;
pad=1

BatchNorm 96 144 64
Upsample (48+3, 64+3) (48+3, 64+3) (48+3, 64+3)

Conv2D
in=96; out=2;
k=6; stride=1;
pad=1

in=144; out=1;
k=6; stride=1;
pad=1

in=64; out=1;
k=6; stride=1;
pad=1

Table 2.1: Modification details of the pretrained models. The first row ’Pretrained’ show which
layers were selected from the pretrained model to use. Then the rest of the rows indicate what values
were used for which layer. The full architecture of the model is shown in Figure 2.1.
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(a) (b) (c)

(d) (e) (f )

Figure 2.2: Selecting adversarial clusters. An algorithm is written to detect and select the clusters
that are not the largest and make them into new targets.

MSE loss generally has been chosen either directly or with some variations in other studies

for visual saliency prediction (Pan et al., 2017; Jetley, Murray, & Vig, 2016).

2.2.3 Generating adversarial images

For each image, we want to generate perturbation to add to the original image, giving adver-

sarial attacks that transfer across models. This means, for an image input image X (fig. 2.3a)

with a target T (fig. 2.3b), we generate adversarial perturbation such that models will predict

adversarial heatmaps Tad v (as fig. 2.3e). This way, a different perturbation is constructed for

each image, however each perturbation contains a fixed ratio of weight parameter for pixel

loss (LMSE ∗α) and total variation loss (LT V ∗β).

A k-nearest neighbor algorithm is written to generate Tad v . For each X, the algorithm lo-

cates random ki centroids, and for each pixel it determines the cluster that it will be in which

corresponds to the nearest ki centroid. Then it calculates the new centroid of the formed ki

cluster, using the weighted average of the centroid where the pixel values on the heatmap are

the weights. A cluster centroid is randomly selected that reach above a speciofic threshold,

while eliminating the largest cluster.

A gaussian blur is then placed on the location of the selected centroid, smoothening out

the cluster. The size of the gaussian blur depends on the pixel density of the cluster. The

clusters are shown in figure 2.2.
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We have a model that predicts a saliency heatmap Y containing two clusters at position k1

and k2 based on an input image X. The k-nearest neighbor method is used to make adversarial

targets resulting in Yad v containing only one cluster k1. We want to modify the image Xad v

by minimizing the loss between Yad v and Xad v . With the parameters of the trained CNN-

ensemble, we can perform iterated gradient descent on X in order to generate our Xad v (see

algorithm 1.). This iterative approach is often used to generate adversarial images.

Loss functions for perturbations

In order to make our adversarial images, we need to use a pixel loss and tion loss.

Pixel loss: The pixel loss is computed in a per-pixel basis, where each value of the predicted

saliency map Y is compared with its corresponding target T. For the pixel loss we used the MSE,

which is explained in equation (2.3).

Total-variation loss: Total variation loss acts as a spatial smoother to regularize image and

prevent its denoising. Because we wanted to also fool humans and not only computers we

decided to use the total variation loss method as follows:

LT V (P) = ( M∑
i=1

N−1∑
j=1

(Pi , j −Pi , j+1)2)− (M−1∑
i=1

N∑
j=1

(Pi , j −Pi+1, j )2) (2.4)

where P is the perturbation matrix and N xM are the dimension of P. The total variation

(TV) loss encourages spatial smoothness in the generated image. By reducing the total vari-

ation of the signal subject to it being a close match to the original signal, removes unwanted

detail whilst preserving important details such as edges.

Adversarial loss: We use the combination of both pixel and total variation loss for the cal-

culation of the perturbation.

Lad v (Y,T,P,α,β) =LMSE (Y,T)∗α+LT V (P)∗β (2.5)

Perturbations

The perturbations were then made by first initializing a tensor of random numbers between

1 and 0, then using the ADAM optimizer (Kingma & Ba, 2014) to optimize the adversarial loss

using the following algorithm:
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Algorithm 1. Adversarial Perturbation

Input: X,T,α,β,ε

Output: Xad v

Initialize P ← 0

for i = 1, ..., I do

Xad v ← X+P

y ← M(Xad v )

l ←Lad v (Y,T,P,α,β)

P ← P+∇l ·ε
end for

return X+P

2.3 Results

2.3.1 Making adversarial images and testing the CNN-ensemble

While training the model’s, the losses of the training and test set are monitored in order to stop

the training in case of overfitting. In figure A of the appendices, the plots of the losses over

epochs are shown and the plots show until which epoch each model is trained. After training

the model, We first assess the transfer of our constructed images to the CNN-ensemble and

showed that the models perform well on both images images. Attacks using adversarial im-

ages always succeeded in changing the predictions of the test models (see fig. 2.3 for example

predictions).

2.3.2 Testing the adversarial images on separate models

So far, only the CNN-ensemble has been tested, which does not show any transferability of

adversarial attack amongst different models. We therefore also tested the performance of dif-

ferent models: The 5 individual models that make up the ensemble shown in figure 2.1 and

two well-performing models (ResNet152 and VGG19) that were not used in the generation of

the adversarial images (He, Zhang, Ren, & Sun, 2016; Simonyan & Zisserman, 2014). Just as the

other 5 models, we took the pre-trained ResNet152 and VGG19 model and then replaced last

17
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(a) (b) (c) (d) (e) (f )

Figure 2.3: Model’s prediction based on ground truth and adversarial images. The images
in the first three columns (a - c) are the ground truth images (a) from the validation test set along with
each corresponding ground truth target (b) and model’s prediction. The ground truth image (a) is used
to generate adversarial images shown in the fourth column (d), which are based on the adversarial target
(e), and finally used to test the model’s prediction (f).

few layers with our own layers so that the model becomes a salience model. The source code of

the modifications can be found in the GitHub repository Adverliency of account lelynn. Some

example prediction of the adversarial images are visualized in figure 2.4. We can see that for

the models that were an element of the CNN-ensemble (fig. 2.4a), the predictions for the ad-

versarial images appear to be accurate and so do the ground truth predictions. For the models

that were not part of the CNN-ensemble (Fig. 2.4b): the prediction for the adversarial input

by the ResNet, seems accurate, however the prediction by the VGG seem to be similar to the

ground truth. This tells us that for this particular image, the adversarial attacks is transferable

to all the models that make up the CNN-ensemble and also the ResNet152 model, but not to

the VGG19 model.
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(a)

(b)

Figure 2.4: Performances of the semi-pretrained individual models. The first three columns
belong to the adversarial images and the last three belong to ground truth images. Column 1 and 3 are the
input, column 2 and 5 are predictions, and column3 and 6 are the targets. Top 5 rows (a) are predictions
from models that have been used to make an enseble and the ResNet an VGG were not present in the
architecture of the CNN-ensemble.

19



3 Adversarial images for humans

3.1 Introduction

Since humans and other primates have retinas that limit visual details, it is a natural process to

make eye-movements continuously in order to observe the surrounding environment. When

presented free-viewing image, visual cues will rival for our attention based on bottom-up sig-

nals, affecting which directions our eyes will move. As shown in the previous chapter, CNNs

built to predict visual attention exploit particular features useful for predicting how human

observers will explore a given visual scene. These models predict eye movements very accu-

rately solely on visual features such as color. This supports the notion that changes of these

images based on these learned features might guide viewing behavior.

3.1.1 Adversarial images for humans

One can say that adversarial images are visual illusions to machines. Visual illusions are im-

ages that deceive a human into thinking it is something that it is not. As mentioned before,

researchers have been able to show similarities between CNNs and the human visual system

(Güçlü & van Gerven, 2017, 2015). Activity in deeper CNN layers has been observed to be pre-

dictive of activity recorded in the visual pathway of humans and primates (Güçlü & van Ger-

ven, 2017; Cadieu et al., 2014; Yamins & DiCarlo, 2016). These similarities encourages the idea

of the possibility that adversarial examples made for computers vision models, may be able to

affect the human visual system. Elsayed et al. have shown that adversarial images can affect

classification of images for time-limited humans (Elsayed et al., 2018). Though it was shown in

a very limited experimental setting, it is a further suggestion of resemblance between modern

CNNs and human cortex to some extend.
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Figure 3.1: Different versions of experimental runs. The experiment contains 3 versions. Each
subject is assigned to one version. For one subject, 540 images are presented, with each image being
either adversarial ground truth, or original.

There are still major differences in computer and human vision. For example, the eccen-

tricity and sensitivity to spatial information is very different. This might cause perturbations

on adversarial example that are out of human’s visual range, and consequently would have

no impact on human perception. To count for these differences, we induced blurring on the

perturbation using the total variation loss as described in the previous chapter. This chapter

explains how we investigated whether the constructed adversarial images from chapter 2 can

change human eye movements compared to ground truth images.

3.2 Material and methods

Participants

16 naive subjects between 18 and 30 years old participated in the complete experiment, 5

of which were male and 11 female. All participants had (corrected-to-)normal vision. And

for each participant, informed consent was obtained before the study in accordance with the

guidelines of the Donder’s Centere for Cognition provided by the Donder’s Intitute, Nijmegen.

Participants were seated comfortably 60 cm from the screen, with their head stabilized on

a head rest. Eye movements were monitored by measuring each participant’s both eyes using

an infrared video-based eye tracker (Eyelink 1000 Plus; SR Research), operating at 1,000 Hz.
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Stimuli and procedure

The images for the experiment were 224 x 224 pixels with 3 color dimensions RGB and saved as

JPG format. each image was shown for 3.4 seconds and then have a 0.7 seconds fixation point

in between the presented images, making it approximately 40 minutes screen time including

answering catch trials. The experiment consisted of three different versions where each par-

ticipant is assigned to one specific version. The only difference in the versions is that the im-

age type per image. Each version contains the same amount of adversarial, ground truth and

baseline images, which are pseudo-randomly distributed within that version, a representation

is shown in figure 3.1.

3.2.1 Experimental Conditions

There are 540 n experimental images with each image having a number ranging from 0 to 540.

Additionally 9 catch images are presented throughout the experiment for each subject ensur-

ing that the subject is paying attention to the images. Each of the experimental images are

selected from the validation dataset, containing of three image types: ground truth, baseline,

and adversarial.

• Ground truth image: Images obtained from the SALICON training set are used and pre-

sented in its original size for the experiment (480x640 pixels). These ground truth im-

ages have no perturbations.

• Adversarial image: Images with added adversarial perturbation P to ground truth im-

ages, crafted to cause machine learning models to predict different heatmaps than orig-

inal target (e.g., if the image was originally a scene with four salient areas, we perturbed

the image to be predicted to have one salient area). We used the α and β to adjust

the strength of the perturbation. For instance, we chose β to be large (to improve the

chances of adversarial examples transfer to human) but kept it small enough that the

perturbations are subtle that humans are not aware of the perturbations.

• Baseline image: similar to adversarial images but the adversarial perturbation is not

targeted at one cluster. The perturbation is made using a target heatmap representing

the average of all heatmaps. This is to have nearly identical perturbation statistics to the

adversarial image as control.
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(a)

(b)

(c) (d) (e)

Figure 3.2: Visualizing raw eyetracking data and transforming to 2D histogram. The x-y co-
ordinates of each eye during an image are plotted over the image that the subject sees for 3.3 seconds (a).
Between the images, a fixation point in the center of the screen is shown and here eye data is also plotted
to see whether they fixated properly (b). Then a 2D histogram is made based on the raw data over time
(c). The histogram will then be compared with the original (d) and adversarial (e) target heat maps.

• Catch image image: This image is shown once in 30 images along with the question

"have you seen this image before?" to see whether the subject is actually paying atten-

tion. Half of the time the correct answer is yes, and the other half is no. The catch images

are not used for data analysis, only to test whether subject’s are paying attention.

3.2.2 Data analysis

For obtaining the eyetracking data, the Eyelink program is used with the program Pylink on

python. I tracked both eyes and calibrated it before each trial. During recordings, there are

three files being saved. 1) the log files where all the images shown and keypresses and their

corresponding times that they occurred during the experiment are logged, this is called the

log file. 2) the raw eye-tracking data is saved in the edf file. This contained the necessary data

to see where the subject was looking at on the image. The file contains (x, y) coordinates for

both left and right eyes, and the pupil diameter for each eye. Each timestamp is 1ms, since the

framerate was set to 1000Hz. The pupil diameter and the rest of not mentioned data saved in

the file were not used in the experiment. The third file 3) is a csv file that contains all the images

that were shown and whether they were catch images or not and what the correct answer is for

the catch trial is.

The data is analyzed based on the three files resulting from eye recording. The eye-coordinates

with time-stamps data was saved in an .edf file with the Eyelink program which is then man-

ually converted to .asc type. The eye-coordinates are used to plot onto the images that are

shown (as shown in Figure 3.2a). The data is then converted to a 2D histogram (χ) (shown in

Figure 3.2c) counting the number of datapoints during an image over x and y buckets. There
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are two different scoring systems to compare the eye fixations on different images.

• The first one is based on this formula:

log _scor e = 1

n

∑
(log

pg t (χ)

pad v (χ)
) (3.1)

where Pg t (χ) is the distribution of the subject’s 2D histogram χ for one image multiplied

by its corresponding ground truth target (Tg t ) and Pad v (χ) is the distribution of the his-

togram χ times adversarial target (Tad v ).

• The second scoring system is the similar to the first, but then uses negative plots to cal-

culate, as follows:

neg _log _scor e = 1

n

∑
(log

pneg_g t (χ)

pad v (χ)
) (3.2)

Where Pneg_g t (χ) is χ histogram multiplied by the negative target (Tg t −Tad v ).

3.3 Results

3.3.1 The Eye fixation maps

For each image, we took the raw x - y coordinates and made a 2D histogram (χ) which counts

the number of datapoints over x and y buckets. The buckets are chosen based on the amount

of pixels on the target heatmaps (48 x 64). The χ histogram is used to compare with the two

targets to test for any effects.

3.3.2 The Divergence scores

As mentioned before, to test the effects of the adversarial images, we compute divergence

scores using the formula in equation 3.2. What we expect to see in the divergence score distri-

bution plots is that the adversarial curve is relatively more to the left compared to the baseline

and ground truth images, whereas curves of the baseline and ground truth should be relatively

similar, as shown in figure 4.1.
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(a) (b)

(c) (d)

Figure 3.3: Visualizing the results of all 16 subjects. The log_scores of all 16 subjects plotted in a
1D histogram. a) compares all three score kinds together. b) compares adversarial and baseline. c) com-
pares adversarial and ground truth scores, and d) compares the ground truth and baseline images. The
average of all the scores are: baseline_scores: 375.013 +- 13.914, adv_scores: 339.380 +- 8.291, gt_scores:
393.662 +- 12.669. Error values are standard error of the mean.
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(a) (b)

(c) (d)

Figure 3.4: Scores of 16 subjects using negative targets] The neg_log_scores of all 16 subjects
plotted in a 1D histogram. a) compares all three score kinds together. b) compares adversarial and base-
line. c) compares adversarial and ground truth scores, and d) compares the ground truth and baseline
images. baseline_scores: 336.021 +- 14.341, adv_scores: 290.868 +- 9.024, gt_scores: 339.114 +- 13.424.
Error values are standard error of the mean.
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(a) (b)

Figure 3.5: Testing significance by comparing the P-values Paired t-test of the averaged scores
were calculated.

The distribution of l og _scor es obtained from 16 subjects are plotted and compared in

figure 3.3. The neg _log _scor es are shown in figure 4.1. Both group of plots show different

distribution of scores with fitted curves for each score type. The red curve are fitted over ad-

versarial scores, green is fitted over the ground truth and blue is fitted over baseline scores.

In the distribution plots, we see the slight difference which appears to be in the direction of

what we expect. Additionally, the average score of the adversarial images are the lowest when

compared to the other two averages.

With the scores for all images for all subjects, we perform a paired t-test to see whether the

effects shown on the histogram are significant. What we expect is to have significant difference

between the adversarial and ground truth scores, and adversarial and baseline scores whereas

there should not be a big difference between the ground truth and baseline. We also expect is

the average of the adversarial score to be the lowest value and the baseline and ground truth

values not to differ from each other too much. This is also what we observe. The results are sig-

nificant based on the paired t-test on all of the scores, as shown in figure 3.5. When comparing

adversarial and ground truth log _scor es, the difference was significant with P < 0.0005. When

comparing adversarial with baseline, there is also a significant difference with P < 0.05. When

comparing neg _log _scor es, the differences were also significant with adversarial vs. ground

truth P < 0.005. When comparing adversarial with baseline, P = 0.006. And finally, there was

no significant difference between ground truth and baseline, which is what we expect. This

tells us that the adversarial perturbations generated using the CNN-ensemble, has influenced

human perception towards the targeted eye movements.
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4 Discussion and Conclusion

4.1 Discussion

Our results suggest that human eye movements can be influenced by adversarial images that

have been designed to fool machines. This suggests that there is some degree of similarity be-

tween the information of an image that humans and machines extract and uses when deciding

areas to pay attention to. Elsayed et al. suggested that perhaps they were able to fool time-

limited humans but not no-limit humans because the 1) "lateral and top-down connections

used by the no-limit human are relevant to human robustness to adversarial examples" or 2)

"adversarial examples do not transfer from feed-forward networks to no-limit humans because

of these architectural differences" (Elsayed et al., 2018). There is a major flaw in their sugges-

tion however, because their task was specifically designed for time-limited humans, to ensure

that they did not change the true class of the image, therefore it is logical that they only fooled

time-limited humans. In order to make such claims, they should have executed an experiment

designed for non-limited humans which imaginably does not involve a categorization task.

Our chosen method and task for participants was an beneficial choice for testing transfer-

ability of adversarial images across machines and humans, because the ground truth signals

were not labeled based on human judgment. This allowed us to show that humans could be

affected by adversarial attacks, even when allowed to look at an image for multiple seconds.

We suggest here that humans are vulnerable for adversarial examples and that it is possible to

transfer from feedforward networks to no-limit humans.

Adversarial images are mostly portrayed as a threat to the machine the learning industry

and we showed how it can also hold possible threats for humans. The beauty and the danger

is that the human observer is unaware of the manipulation: when asked after experiment, all
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(a) (b)

(c) (d)

Figure 4.1: Plots of data if it were to be of maximal or minimal effect. The scores at extreme
cases
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subjects were not aware of any image transformations. A risky applications can be for exam-

ple images on billboards and online ads that contain adversarial perturbations to guide eye

movements. Obviously, we do not suggest that all adversarial images that affect CNNs, can be

used to fool humans. We simply introduce examples that do affect both CNNs and humans.

Although our results did not show an immense amount of alteration when compared to the

dissimilaty of curves in the plot with maximum effect in figure 4.1, the results were certainly

significant as shown in the t-test 3.5. Regardless of normalizing the targets, the scoring system

still has a slight bias for ground truth targets, because when looking at the cluster on the ad-

versarial image it will always overlap with a cluster on the ground truth cluster. So the scoring

favors ground truth targets, and nonetheless, the results are significant. We also computed the

scores with the negative maps, however this method is expected to have a bias towards the ad-

versarial target since we remove a cluster from the ground truth target for scoring. By plotting

the maximal effect (using the corresponding targets as data), we see how it would look like if

the adversarial images had maximum effect on observers or no effect at all. It also shows that

the biases of the scoring method are excusable.

4.1.1 Future experiments

It is also possible that the adversarial images could cause even larger effects if the parameters

were adjusted. For example, one can test whether adversarial images would be more effec-

tive when using different β and α for the adversarial loss function, or utilize a different loss

function completely. Another suggestion could be a change in targets, perhaps the SALICON

ground truth targets were not accurate enough for the models to generate proper adversar-

ial images, since they did not use eye-trackers. It could also be interesting to improve the

trained models by implementing category-specific saliency predictions as done in the Dodge

& Karam study (Dodge & Karam, 2018). Or perhaps, we could also test whether probabilis-

tic models that are shown to be well performing saliency models (Jetley et al., 2016), permits

better construction of adversarial images.

30



4.2 Conclusion

So far it has never been shown whether adversarial images could influence a human observer’s

attention. Our results suggest that it is possible for adversarial images, that are manipulated in

a specific way, to cause human observers to change their eye-movements without them being

aware. Our findings further supports the notion that there are striking similarities between

CNNs and the human visual system. The evidence of this particular connection gives us a

powerful tool to bridge the gap between neuroscience and AI.
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A Appendix

Figure A.1: Plots of the mean squared error (MSE) loss during training the last layers of the AlexNet
model.

Figure A.2: Plots of the mean squared error (MSE) loss during training the last layers of the DenseNet
model.
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Figure A.3: Plots of the mean squared error (MSE) loss during training the last layers of the Inception
V3 model.

Figure A.4: Plots of the mean squared error (MSE) loss during training of the ResDec model.
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Figure A.5: Plots of the mean squared error (MSE) loss during training the last layers of the SqueezeNet
model.

Figure A.6: Plots of the mean squared error (MSE) loss during training the last layers of the VGG19
model.

Figure A.7: Plots of the mean squared error (MSE) loss during training the last layers of the ResNetM-
SEplot model.
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